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1. Introduction

The objective of MADCAT is to produce a robust, highly accurate transcription engine that
ingests documents of multiple types and produces English transeriptions of their content. For
addressing the technical challenges implicit in that goal, the BBN-led team proposed a system
that embodies integration of five major operations: (1) pre-processing and image enhanecment,
(2) page scgmentation, (3) text recognition, and (4) metadata cxtraction. In Phasec | of the
MADCAT effort, we made significant improvements in all the above areas. In addition, we
developed an end-to-end system for processing the Phase | evaluation data. The evaluation
system e¢xceeded the Phase 1 program goal of 40% accuracy on 70% of the documents. Below,
we summarize the work performed by the BBN-led team in Phase | of the MADCAT effort. We
highlight our accomplishments by cach technical arca and also indicate the performers in that
area.

2. Accomplishments in Pre-processing [BBN, Polar Rain, SUNY, UMD]|

The goal of pre-proecessing is to enhance noisy/degraded images for text recognition and
translation. Typically, handwritten text often contains non-text artifacts such as ruled page-lines,
stains, speckle noise, cte. Often the document has breaks in the text glyphs and some glyphs are
merged. Also the seanning may produce images at a low resolution.

In this phase we focused on two areas: (a) ruled page-line removal, and (b) image-enhancement.
2.1 Page Line Detection [BBN, Polar Rain, SUNY, UMD]

Heuristics for Page-line Detection and Removal [BBN]: In this approach, the input image is
initially divided into ten equal vertical strips. Page-lines are detected for each strip as follows:

1. The projection profile of the intensity is normalized by dividing it by the width of the
strip. The normalized projection profile is denoted by PROJ(Y).

2. A smoothing template is applied to the projection profile. The smoothed value
PROJ SMOOTHED(Y) at a given Y is the average of all the values within a window of
W pixels wide, centered at Y. Different values of W (set to 2*dpi/300 and 4*dpi/300) are
used to deteet lines of different widths.

3. We scarch the smoothed projection profile for pixels Y* such that
PROJ SMOOTHED(Y*) > 0.5 and the local maxima is within the radius of 12dpi/300

4. For cach Y* detected, we search within|y — Y ¥ < 3-dpi /300 of the strip for black pixels
and mark them as “page-line pixels”

(a) Ruled-line detection (b) Classification of ruled-line pixels

Figure 1. Classification of ruled-line pixels as black or white.

The detected ruled-lines are classified as “black” or “white” heuristically. If a pixel not associated
with the page-line is black and adjacent to a page-line pixel, then the pixels starting from the onc
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immediately adjacent to the page-line pixel to the pixel at the eenter of the page-line are classified
as “black”. The rest of the pixels arc classified as “white”. An illustration is shown in Figure 1.

MRF-based Page-line Removal [BBN]: Most approaches for page-line removal such as the one
described above introduce artifacts such as breaks in a glyph, which does not result in any
significant improvement in word error rate (WER). To reduee the artifacts introduced by page-
line removal, we developed a page-line removal and restoration algorithm using Markov Random
Field (MRF). A binarized image i . ,
1s modcled as the output of an
MRF and the pixels associated G&Z)

3 ] ?

with the ruled-line are restored

using. the belief p.ropagation (a) Input  (b) Heuristic (c) MRF
algorithm. As shown in samples ) )
feBE MADCAT data Figure 2: MRF based ruled-line removal.

(distributed by LDC) in Figure
2, our approach removes the page-line while still preserving the smooth edges in the handwritten
glyphs. The MRF approach is also visually better than a heuristie-based approach for restoration.

Shape-DNA based Page-line Removal [Polar Rain]: In this phase, we designed a text line
detection and removal algorithm for handwritten document images based on Shape-DNA models.
In this approach, the binary input image is projected onto a text database. A ruled page-line
database is computed from page lines, and the document image is projected onto this database in
order to detcet page lines. Shape-DNA models arc thus eomputed off-line using page-line images
(e.g., images full of horizontally parallel lines) so as to build a database that models the
characteristics of page lines that are observed in handwritten document images. We compute a list
of shape-DNA patterns that have similar shape to ruled line artifacts and cxclude these patterns
during projection onto the text databasc. We also compute the text database from only
handwritten text images.

Input document images are then projected onto Shape-DNA models. The projection image is a
probability image that shows line segments on the locations of possible page/rule lines and also
on the locations of text characters. On the locations of possible page/rule lines, probabilities are
much stronger compared to text characters. Therefore after binarizing the probability image, the
images with and without page/ruled lines are obtained for each document. High level-semantic
based morphological operators are applied to the projection distance image. The line deteetion
process takes about two seconds for an image of size 2500x3300 pixels. Experimental results
with more than a thousand images showed that the false positive rate (i.e., percentage of
documents without rule lines that arc detected to have lines) is less than one pereent and the false
negative rate is zero, In other words, all handwritten documents with rule lines are detected.

We also developed a page-line cleaning algorithm for handwritten documents with ruled lines.
While projecting the input image onto Shape-DNA models, image blocks where the projeetion
distance to the line database is smaller than a pre-defined threshold (e.g. twice the block length),
are sct to white patterns assuming that they correspond to rule lines, not text characters. To
remove existing artifacts in this image, such as page-lines between characters, we exploit the line
image and use the computed locations of page-lines to clear them from the page-line removed
image. After page-line cleaning, the image may still have some line artifacts, such as small line
segments that are close or connected to text characters. We have developed a handwritten image
restoration technique in order to remove such artifacts and restore the shape of text charaeters.
We do this by eomputing new Shape-DNA models using handwritten document images to model
the text characters for handwritten text.

Run-length based Page-line removal [SUNY]: Many Arabic characters have long strokes that
are almost horizontal and run along ruled page-lines. So, simple projection profile-based methods
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for ruled-linc removal do not work well for such documents. In this phase, SUNY developed a
module for page-line removal based on the following prineiples. Horizontal run-length smearing
is used to fill in small gaps in ruled lines that were typically caused due to binarization artifacts.
Next, an adaptive fuzzy run-length based approaeh eoupled with heuristics is used to deteet the
position of the page-lines and subsequently remove the page lines. When ruled page-lines are
removed, some pixels belonging to handwritten text strokes eould also be inadvertently removed.
Therefore, we used a region-growing based method to restore the text strokes damaged during
page-line removal.

Page-line Detection and Removal using Linear Sub-spaces [UMD]: We investigated a novel
method for removing page rule lines in monoehromatie handwritten Arabic doeuments using
subspace methods with minimal effeet on the quality of the foreground text. We use moment and
histogram properties to cxtract fcaturcs that represent the characteristies of the underlying rule
lines. During the training phase, wec incrementally construet linear subspaces representing
horizontal and vertical lincs using a set of rule line-only images. During the testing phase, we
mcasured the distancc between featurcs extraeted from the test image and the previously
eonstrueted subspaee. Pixels that belong to foreground text regions have larger distances to the
subspaee and will be left unchanged. We also introduced a pixel-level evaluation methodology
that can generally be used to assess the accuraey of any noise removal algorithm and we applied
it to thc page rule linc removal problem. Evaluating algorithms for noise removal from
handwritten doeuments requires pixel-level annotation (i.c. ground truth) in order to eompute
meaningful statisties. Sueh pixel level annotation cannot be manually obtained for large
collections of document images. In order to address this problem, we introdueed a method for
creating semi-synthctic data sets that ean be used to evaluate noise removal algorithms. A number
of pages that contain page-lincs but no text are first seanned and binarized to erecate a set of page
templates. These templates arc then eombined with a set of doeument images containing only text
handwritten by diffcrent writers, in a eross produet fashion. Interactions between text (in different
positions and styles) and ruled lines results in significant variability in the evaluation data.
Experimental results presented on a data sct of 50 Arabic documents, handwritten by different
writers, demonstrated that the subspace method achicves approximately 88% for both rceall and
preeision on the 50 test images.

2.2 Image Enhancement [Polar Rain, SUNY]

Shape-DNA based Image Enhancement [Polar Rain]|: In this phase, we performed cxperiments
to assess the usefulness of shape-DNA enhaneement on machinc-print and handwritten images.
The shape-DNA approaeh uses a database of low- and high-resolution shapes and a probabilistie
shape-mapping model. The database and mapping are both automatically lcarned from training
data to cstimatc high-resolution details from low-resolution shapes using shape-based
computation modcls.

For our initial prc-proccssing cxperiments we ereated a corpus of images from two different
sourees: (1) 300 real-world documents acquired primarily in Afghanistan, and (2) a controlled
document set of 33 images gencrated by three different Iraqi writers each writing the same 11
distinet documents. Using this eorpus of images, two sets of preliminary experiments wcre
performed to scparately assess the restoration and clcaning attributes of the shape-DNA approach.
In the first set of experiments the usefulness of the restoration was assessed. We first estimated
shapc databascs using 15 of the 33 controlled handwritten documents. Then, we synthetieally
degraded the remaining 18 eontrolled documents by introducing breaks in character glyphs and
degradations that mimie those observed in real-world doeuments. Finally, we applied the shapc-
DNA tcehnique to restore the broken characters. In the second set of experiments, our goal was
to evaluate the eleaning of real-world documents without restoring the text. For these experiments
we did not train on the eontrolled handwritten data. Instead we used shape databases trained on
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machine-printed Arabie documents. We assessed the effectiveness of the restoration and eleaning
proeesses through a visual eomparison of the output with the input image. The eomparison
showed that the shape-DNA teehnique is eapable of eleaning age-related degradations and
smudge marks in real-world doeuments. On the eontrolled set of handwritten doeuments the
shape-DNA teehnique was able to reeover most of the missing pieees of the broken eharaeters.

We further focused on eonfiguring shape-DNA enhaneement on doeuments in a DIA-supplied
corpus of Arabie text as well on doeuments from the MADCAT handwritten eorpus. The images
in the DIA corpus are very noisy and also eontain a fair number of non-text objeets, with
handwritten text often overlaid on these non-text objeets. Therefore, it is important to deteet text
in sueh doeuments before eleaning or restoration. We also observed that the projeetion of text-
only segments onto shape-DNA models results in mueh smaller distaneces eompared to the
projeetion of non-text segments onto the same models. Based on this observation, we explored a
novel applieation of the shape-DNA approaeh, namely, to differentiate text-only segments from
non-text segments. For our initial experiments, we used shape-DNA models trained on printed
text doecuments. Next, we used these models to deteet text-only regions in samples doeuments
from the DIA eorpus. Preliminary results indieate that this approaeh is a viable one for text
deteetion and verification. As shown in Figure 3, our approach is robust to segments that eontain
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Figure 3: Shape-DNA on DIA sample from Afghanistan.
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a mix of text and non-text object.

We also applied shape-DNA enhaneement to images in the Applied Media Analyties (AMA)
eolleeted handwritten (HW) eorpus. Sinee the AMA images eontain artifacts such as page lines,
extraneous dots, seanning artifaets, ete., we eustomized the restoration to handle sueh
degradations. Figure 4 shows a sample output for the shape-DNA restoration applied to an AMA
sample eontaining page lines and other seanning artifaets.

Morphology-based Image Enhancement [SUNY]: In this phase, we additionally developed a
noise removal and image enhaneement algorithm based on a eombination of morphology-based
and the region growing binary image enhaneement algorithm. An example is shown in Figure §.
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Figure 5: Example of Morphology-based Image Enhancement.

3. Accomplishments in Page Segmentation [Argon, Lehigh, Polar Rain, SUNY,
UMD]

The objeetive of the page segmentation task is to deeompose an image into “pereeptually
consistent” zones, where pereeptual eonsisteney is deseribed in terms of local texture similarities,
with the goal of produeing zones that eontain a single type of eontent (machine-printed text,
handwritten text, graphies, ete.). In addition, aceurate segmentation of text zones into lines of text
is critical for doeument level OCR systems. The MADCAT dataset distributed by LDC contains
many doeuments where the handwritten text is very erowded and there is skew in multiple
direetions within the same doeument. Grouping small elements sueh as dots and other diaerities
with the right text line is a big challenge for handwritten text. In this phase we foeused on
segmenting the image into pereeptually eonsistent zones and line segmentation for text zones.

3.1 Page Zoning [Lehigh, UMD]

Pixel Level Zoning [Lehigh]: During this phase, we investigated pixel-based approaches for
page segmentation that, while eomputationally demanding, offer the potential to be general and
robust. Our techniques employ a range of elassifier teehnologies, including brute-foree k-Nearest
Neighbors (kNN), fast approximate kNN using hashed k-d trees, elassifieation and regression
trees, and loeality-sensitive hashing. Initial experiments suggested that per-pixel aceuraeies were
modest, in the range of 60% to 70%. Acecuracy improvements of up to 80% were aehieved by
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refinements in ground-truthing protocols. Recent algorithmic improvements to our approximate
kNN elassifier using hashed k-D trees allows trade-offs between runtime and aceuracy which are
highly promising: a 23-times speedup with less than 0.1% loss of aceuraey; or a 60-times
speedup with less than 5% loss of accuracy. We plan to investigate this further in the next phase.

Voronoi-Tessellation Zoning [UMD]: Page segmentation techniques typically divide the image
into non-overlapping rectangular boxes around perceptually eonsistent zones (text, graphies,
tables, cte.). But in pages where the layout is arbitrary, extracting non-overlapping rectangular
zones is not only infeasible but also undesired. We have therefore developed a page segmentation

algorithm based on Voronoi-tessellation to extract arbitrary-shaped zones with homogeneous
content. The algorithm proceeds as follows:
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Figure 6: Example of page zoning using Voronoi-Tessellation algorithm

A page is segmented into regions using Voronoi tessellation — based on the connceted
components to obtain the candidates of boundarics of document components.

2. The candidates are utilized to estimate the inter-character, inter-line and inter-eolumn
gaps without the use of domain specific parameters so as to seleet the boundaries.

3. The regions are separated by a series of small line segments marking boundaries between
adjacent regions.

4. Line segments surrounding cach region are sewn together to form a polygon. Henee,
polygonal-based region segmentation is achieved.

5.

Each region-polygon is approximated to contain minimum number of edges.

Our initial assessments shows that the basic Voronoi eell approach performs reasonably well on
clean documents, but noise artifacts result in creation of false regions. An example of the
performanee of the algorithm is shown in Figure 6.

3.2 Text Line Segmentation [Argon, Polar Rain, SUNY, UMD]

Local Concavity Map based Text Line Segmentation [SUNY]: We implemented a line finding
library using an adaptive local connectivity map. In this approach, we generated a location mask
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for the line pattern and cxtracted text lines by supcrimposing the location mask on the original
image. While this works rcasonably wcll for most pagcs, we found that the performance degrades
on documents with crowded lines and wide variability in skcw. Thercfore, we implcmented a
new line-scgmentation algorithm using a stecrable filtcr to assist thc text linc segmentation
process. The stecrable dircctional filter is a mathematical image filter that finds the local
orientation of a text linc by scanning in multiple dircctions. The maximum responsc from a
convolution of thc filtcr with thc image gives the text linc direction. Finally, the image is
modified into a text line pattern map.

Another problem in text line scgmentation is the problcm of scparating components that span
adjacent lines or arc touching componcnts from other lincs. In order to tackle this problem, a
strokc scgment that crosses the text linc is automatically dctected and annotatcd. A splitting
reference linc is found using center of gravitics of the contours and splitting is done only for the
dctected touching picees. The splitting is done at the contour Icvel which allows a reconstruction
of thc character images. Figurc 7 shows a crowded page and the result from the text line finding
modulc. The highlighted arcas are bounding boxes of touching characters crossing diffcrent text
lincs. The split characters arc rcconstructcd and accurately grouped with the text lincs that they
belong to.
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Figure 7: Example of Text-line separation using Steerable filter

Affinity Propagation based Handwritten Line Segmentation [UMD]: To ovcrcomc the
challenges in linc dctection for handwritten Arabic, we dcveloped a multi-stage approach to the
task. In the first stage, wc automatically determine an arca threshold that is used to remove
diacritics. Next, we fit a 2-Gaussian mixture model to the arcas of the connected componcnts. The
Gaussian component with the smaller mcan value represents the average diacritic arca and the
Gaussian component with the larger value represents the average non-diacritic area. In order to
determine document zones with different orientations, we apply thc Affinity Propagation (AP)
method. AP is an unsupervised clustering method that depends on computing a pair-wise
similarity mcasurc bctween pairs of data points. To dctect text lines within cach text zonc, we
reapply AP on individual zones. However, here we computc the pair-wisc similarity bascd on the




vertical location of the eonneeted components. In the next phase, we will explore tuning of the
parameters to optimize line segmentation accuracy.

Baseline Detection and Slant Correction [Argon]: We implemented a teehnique for deteeting
and correeting curved and slanted basclines. First, we skeletonized and filtered eonnected
components not associated with the baseline. Next, a sliding window encompassing at least three
baseline related components was used to get sufficient context for each sub-word. Finally, local
minima and junetion points were deteeted, and Random Sample Consensus (RANSAC) algorithm
was used to fit a baseline to the original skeleton. For slant eorreetion, each endpoint above the
bascline was traeced back to the vieinity of the baseline, and RANSAC was again used to fit a
straight line to the path. If more than 50% of the points on this line are returned as inliers by
RANSAC, then it is considered sufficiently straight to use for slant correction. We have not
investigated what effect, if any, slant correetion has on our recognition rate. A more formal
evaluation is eurrently planned for Phase 2.

Text Verification [Polar Rain]: We developed a fast and robust text verifieation algorithm based
on Shape-DNA models. This algorithm ean be used either as a tool for text segmentation, or for
identifying homogeneous image regions and for detecting whether homogeneous regions of
interest are non-text or text regions. The algorithm ean also be used to identify the text type, i.e.,
printed or handwritten. In our approach, we first projeet input image segment onto a database of
Shape-DNA patterns. Next, we eomputed histogram statistics of projection distances. Histogram
of projeetion distanees for text and non-text images as well as printed and handwritten text have
different charaeteristies, and this feature is exploited in elassifying the text images. Our approach
takes only 0.5 see for proeessing a 1200x800 pixel image.

Texture-based Text Detection in Camera-captured Images [Argon]: Our approach for text
detection in camera-captured images is based on measuring shape similarity of texture. However,
this technique is not suitable to natural images. In this phase, we developed an initial version of
the text detection module using texturc-analysis based approaches. We used different sets of
features ineluding wavelet coefficient histograms, color, edge orientation, and shape features.
These were divided into three main groups (wavelet, color, edge/shape) and a Support Veetor
Machine (SVM) elassifier was trained on each. The results of these SVMs were eombined using
AdaBoost with logistie sigmoid regression. For training, we have implemented a graphieal user
interface to allow for manual construction of ground-truth data. The tool ingests an image,
partitions it into super pixels (collection of similar pixels), and elassifies cach super pixel. These
classifications can then be manually correeted, and the eorrections fed back in as new examples to
train the SVM classifier. In the coming months, we will run experiments to measure aceuracy of
the text detection module. We trained the SVM and AdaBoost elassifiers for text detection on an
internally ecolleeted 29 Ameriean-English eamera-captured images of signs. We also
implemented a previously published Plane Parameter Markov Random Field (PP-MRF) approach
for text reetifieation. Initial assessment of this approach suggests that significant improvements
are required to improve performance.

4. Accomplishments in Text Recognition [BBN, SUNY, Argon, Columbia]

The goal of text recognition is to digitize the text in image zones that have been determined as
containing text. In Phase 1 of the effort, we made several advancements in our hidden Markov
model (HMM) text recognition framework. Additionally, we explored matching using struetural
features such as graph clements and a novel framework for integrating HMM-based and structural
matching techniques.

In this seetion, we first provide an overview of BBN’s Hidden Markov Model (HMM) based text
recognition. Next, we present a suite of techniques for improving HMM-based text recognition




and present experimental results on the DARPA Arabie machine printed corpus as well as the
Phase | MADCAT handwritten corpus released by the Linguistie Data Consortium. We conelude
with results from a novel integration of HMM based recognition and struetural matching.

4.1 Improvements in HMM based Text Recognition [BBN]

4.1.1 Overview of HMM-based Text Recognition

Figure 8 shows a block diagram of our HMM-based text recognition system. The images are first
pre-processed to remove any skew due to rotation of the text during seanning. They are then
segmented into lines of text using an HMM-based line finding algorithm. For each line of text,
features are computed from a sequence of overlapped windows (also called frames). The feature
extraction program typically computes several features for a single frame. A total of 33 of the
following seript-independent features are extracted from each frame: Pereentiles of intensity
values, Angle, Correlation, and Energy (PACE). Linear Diseriminant Analysis (LDA) was then
applied to reduee the dimension of the feature spaee from 33 to 15. The resulting vector of 15
LDA features is a eompact numerieal representation of the data in the frame, and is the feature
veetor used for training and recognition.

Training Recognition

Transcriptions Images

Images

Character Sequence

Figure 8: Block diagram of the BBN OCR system.

We use a 14-state left-to-right Hidden Markov Model (HMM) to model each eharaeter or glyph.
The model for a word is the eoneatenation of the HMMs for the individual characters in the word.
Each state of the HMM has an associated output probability distribution over the features which
1s modeled as a weighted sum of Gaussians. The estimation of the parameters of the HMM is
performed using the Expectation Maximization (EM) algorithm. In order to reduce the number of
parameters to be estimated by the EM algorithm, we share Gaussians across different character
models.

Arabie is a eonneeted seript where each eharaeter ean be rendered in a different graphieal form
based on its position within a word. However, the underlying sequenece of charaeters in the
ground truth transeripts is a sequence of Unicode characters. These Unicode characters are
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inherently context independent and typically the browser or the editor renders the character in the
“presentation-form” based on the neighboring charaeters. We refer to the eontext independent
Unicode character as the “base-form” representation. For training glyph HMMs, we first apply a
set of transformation rules to eonvert the base-form charaeter transeripts into presentation-form
transeripts. Next, we estimate a separate HMM for each presentation-form eharaeter. Training on
the eontextual form of the Arabie eharaeter rather than the base form of the eharaeter captures the
change in a character glyph due to the neighboring characters.

The decoding process is a two-pass beam search for the most likely sequenee of eharaeters given
the observed feature veetors. The forward pass is an approximate but efficient proeedure for
generating a small list of charaecter sequenees that are possible eandidates for being the most
likely sequence. The backward pass is a more detailed search for the most likely character
sequence within this small list.

4.1.2  Baseline Experiments on Machine-printed Images

In Phase 1 of the MADCAT cffort, prior to the release of the handwritten data, we performed our
text recognition researeh on the 1995 DARPA Arabie machine-print (DAMP) eorpus colleeted by
SAIC. The corpus consists of 297 images seanned from newspapers, books, magazines, ete. The
corpus was partitioned into three sets: 60 images for development, 60 images for testing, and 177
images for training the OCR system. In addition to the 177 images from the DAMP corpus, we
used 380 synthetically generated images. These 380 images were created by printing 100
newswire text passages in multiple font types and font sizes.

In our experiments on the DAMP corpus, we used 14-state context-independent HMMs for
modeling the contextual form of Arabie characters and a word or eharaeter n-gram language
model (LM). From the training data, we estimated HMMs for a sect of 162 presentation-form
charaeters. This set ineludes Arabie eharaeters, Arabie numerals, and some additional non-Arabie
numerals and eharaeters. A total of 68K Gaussian mixtures were estimated with a maximum of
512 Gaussian eomponents assigned to each charaeter in the training lexicon.

Next, we estimated both character and word LMs from transeriptions of the images from the
training set as well as from 2.6 million words of Arabic newswire data. The character lexicon
used for character n-grams eonsisted of all 162 eharaeters observed in the training images. The
word lexicon was restricted to the 65K most frequent words in the LM training data. Both the
charaeter and word LMs were trained using Witten-Bell discounting.

We performed recognition experiments on the test set to compare character LM to word LM. The
configuration used for recognition has two steps. First, the two pass deecoding deseribed above
was used to generate an N-best list (character or word N-best depending on the type of language
model). Next, we reseored the N-best list using a trigram word or eharaeter LM). The weights for
combining different knowledge sources in the N-best rescoring were estimated on the
development set. In Table 1, we summarize the word error rate (WER) for both the word and
character LM measured on the test set. As shown in the table, the charaeter trigram LM resulted
in a WER of 12.3% compared to 15.9% obtained by using a word LM. Although a word trigram
models wider context than a character trigram, in our recognition experiments the WER for the
word trigram is higher than the charaeter trigram LM. We believe this is beeause of the high out-
of-voeabulary (OOV) rate of the word LM. The word lexicon results in an OOV rate of 12.6% on
the test set, therefore the errors are dominated by OOVs.
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Language Model — % WER
Trigram

Word 15.9

Charaeter 12.3

PAW 10.1

Tablc 1: Comparison of different LMs for recognition on the DAMP test set.

4.1.3  Improvements on Machine-Printed Images

We explored techniques for improving the language model (LM) as well as the glyph models on
the DAMP corpus.

Higher-order LMs: For the same n-gram order, a charaeter n-gram LM models a much narrower
context than the word LM. Therefore, to model a wider n-gram context using characters, we
estimated n-gram character LMs with #» > 3. Sinee our two-pass deeoder only supports LMs with
n<=3, we used the higher order LMs only for rescoring the N-best list generated by decoding
with a trigram eharacter LM. As shown in Table, 2 inereasing the n-gram order to five deereased
the WER by 0.8% absolute over using the trigram LM. However, increasing the n-gram order
beyond five did not yield additional WER reduction.

PAW-based LMs: A Part-of-Arabie word (PAW) is a character sequence that is typically
rendered as a single eonnected eomponent in an image. PAWs can be sub-words or words and are
derived from the morpho-lexical rules of the Arabic language. An LM trained with PAWs as
lexieal units is likely to provide wider context at the same n-gram order than a character LM,
while still preserving the unlimited voeabulary coverage property of the eharacter LM.

Charaz)t:;eNr-gram % WER
n=3 12.3
n=5 11.5
n=7 11.7

Table 2: N-best rescoring experiments with character LMs with n>3.

We estimated a PAW trigram LM from the same training data used for character and word LMs.
A total of 9K PAWs including individual characters were used as lexicon units in the PAW LM.
The number of PAWs was restricted to 9K by imposing a length cutoff of six characters for the
PAWs. The length cutoff was empirically determined on the development sct by decoding with
different eutoffs. Next, we deeoded the test set using the PAW LM and the glyph HMMs
deseribed in Section 2.3.2.1. Finally, the N-best was rescored using the PAW trigram LM. As
shown in the last row of Table 1, the PAW trigram LM resulted in a WER of 10.1%, a
signifieantly lower WER than the word and the eharaeter trigram LM. We also explored using a
higher order PAW LM for N-best rescoring. However, experimentations with n-gram order > 3
using a PAW LM did not show any additional improvement.

Context-dependent Glyph HMMs: In Arabic seript the shape of a charaeter glyph often varies
based on the position of the character within a word. One approach for modeling this context
dependeney is to use presentation-form echaraeters as modeling units for training context
independent (CI) HMMs. Another alternative is to use base-forms to model glyphs, but instead of
using CI HMMs, use eontext-dependent (CD) HMMs.
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We performed eontext-dependent (CD) training with both prescntation form characters and base
form characters. Wc also used two differcnt eonfigurations for tying HMM parameters. In the
first configuration, referred to as eharaeter-tied mixture (CTM), a single mixture of Gaussians is
sharcd by all contexts of a partieular charaeter. In the seeond eonfiguration, whieh we refer to as
position-dependent ticd mixture (PDTM), a scparate sct of Gaussians is estimatcd for cach statc
of all the context-depcndent HMMs assoeiated with a particular eharaeter. For example, we
estimatc a sct of ‘K’ Gaussians for the first state of all HMMs associated with the eharaeter
“Alif”, and a scparate set of ‘K’ Gaussians for the sceond state of all HMMs for “Alif”, and so
forth.

In addition to sharing thc Gaussians, wc uscd a dceision-trce based elustering of mixturc weights
for both the CTM and PDTM eonfiguration. The deeision-tree uses a set of questions based on
diffcrent characteristics of the eharaeters, e.g. whether the eharaeter is an aseender or a deseender.

In Table 3, wc compare the pcrformance of different CD eonfigurations with the baseline
configuration described in Section 4.1.3. For fair comparison all models werc configured to have
approximately the same total numbcr of Gaussian mixturcs as the bascline configuration.

For comparing the differcnt CD modcls, we decoded the test set using the word LM described in
Seetion 4.1.2. As shown in Tablc 3, CD training using prcsentation form characters as modeling
units did not yicld any improvement over the baselinc CI eonfiguration. A possible reason for this
result is that the eontextual form charaeters, by definition, model glyph variations depending on
the relativc position of thc charactcr within a word. Thus, any additional attcmpt at modeling
context mercly fragments the training data.

Unlike prescentation form characters, eontext-dependent modcling using basc forms characters
with PDTM tying rcsulted in a 0.7% absolutc reduction in WER over the bascline result of 15.9%
obtained using CI modeling with presentation form charaeters.

Training Configuration | %WER
Pres. form, CI (baseline) 15.9
Prcs. form, CD, CTM 16.9
Pres. form, CD, PDTM 16.9
Basc form, CD, CTM 16.2
Base form, CD, PDTM 1S.2
+ MCE training 14.1

Table 3: Decoding the test set with context-dependent HMMs and word LM.

Discriminative Training: Traditionally, HMM paramctcrs arc cstimated using ML eriterion.
However, in reeent years discriminative training has been shown to outperform phonetic HMMs
cstimated using ML for spcech rccognition. Standard ML cstimation attcmpts to find model
parameters that maximizc the likelihood of the training data. In eontrast, diseriminative training
attcmpts to make the eorrect hypothesis more probable while simultaneously making ineorreet
hypotheses less probablc.

Similar to Minimum Phone Error (MPE) used in spccch, recognition, we dcfine the following
objeetive funetion to maximize for performing Minimum Character Error (MCE) training for
glyph HMMs:

Z , P2(O, IM,))P(RYCharAccuracy(h)
> PO, M,)P(h)

Fuce 4= i log
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In the equation above, the CharAccuracy(h) is a measure of the number of characters aceurately
generated in hypothesis A, O; are the feature veetors, 4 arc the HMM parameters, is P;(O;| M )is
the glyph model score, and P(h) is the LM probability.

Next, we used character lattices generated using ML glyph modcls and a unigram character LM
to perform MCE training with basc form CD HMMs with PDTM parameter tying. The extended
Baum-Welch algorithm was used for updating parameters and I-smoothing was applied to avoid
over-training. As shown in Table 3, decoding the test set with the MCE models and the word
trigram LM resulted in a WER of 14.1%, a 1.1% absolutc reduction in WER over the ML models.

Finally, to make use of the best glyph HMM and the best LM, we implemented the following
hybrid recognition sctup. First, we used the CI presentation form glyph HMMs estimated using
ML and the PAW LM to generate an N-best list. Next, the PAW N-best was converted into a
word N-best. Finally, the base form CD PDTM glyph models estimated using MCE was used to
rescore the word N-best list.

Recognition Configuration %WER
Decoding + N-best rescoring with word LM and ML CI 15.9
pres. form HMMs '
Decoding with PAW LM and ML CI pres. form HMMs + 9.6

N-best reseoring with CD PDTM base form HMMs

Table 4: Summary of improvements in WER using a hybrid decoding and rescoring strategy.

In Table 4, we compare the results from the hybrid recognition configuration above to the
bascline recognition configuration with ML CI glyph HMMs and word LM. As shown in the
table, we have achicved a 40% relative reduction in WER over our baseline configuration.

4.1.4  Baseline Experiments on MADCAT Handwritten Corpus

During the 4-month period Junc-December 2008, LDC released a total of 9741 scanned images of
handwritten Arabic text of newswire articles, weblog posts, and newsgroup posts, along with the
corresponding ground truth annotations. First, we trained glyph HMMs after cach relcase using
the Percentile, angle, correlation, and energy (PACE) features used as bascline feature sct. We
also measured the cffeet of inerementally incrcasing the amount of training data used for glyph
modeling on text recognition performance.

Feature Extraction: In order to convert the 2-dimensional images into a |-dimensional sequence
of features nceded to build HMMs, we typically determine the location of the top and bottom
boundaries of the lines of text, and then compute the feature vector for cach of these lines. If the
lines are regularly spaced as in machine-printed data, HMM-based or connected component based
line-finding algorithms achicve ncar-perfect accuracy. However, in free-flowing handwritten
data, adjacent lines of text often overlap. Also, handwritten text exhibits significant variations in
baseline within a text line. This is an issue for feature cxtraction sinee the width of the frame is
sct proportional to the height of the line. All of the above factors make text line finding/separation
for handwritten text a difficult problem. For our experiments in this phase, we used the
rectangular bounding boxes on the individual word images to obtain a picee-wise lincar
approximation of the envelope for the text linc. Features were computed from the picee-wise
lincar envelope around the line image. The left and right boundaries of the word were not used for
featurc extraction. The PACE features were used as the baseline feature set.

Training: In handwritten Arabic text, the shape of the character glyph often varics depending on
the characters that precede and follow it. Sueh context-dependenee of glyphs is typical of cursive
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eonneetcd scripts, but can vary even more widely beeause of a writer’s personal style. Context-
dependcnt HMMs offer a robust, data driven approaeh for modeling eontextual information. We
found that eontext-dependent models out-performed over eontext-independent models for
machine-printcd Arabie text. We trained Position-dependent tied mixture (PDTM) HMM models,
wherc a scparate sct of Gaussians is estimated for each state of all the eontext-dependent HMMs
associated with a partieular eharaeter. In total 254K Gaussians were trained for 176 uniquc
charaetcrs (ineluding Arabie eharaeters, numerals, punetuations and English characters).

Recognition: A trigram language modcl trained on 90 million words of Arabie newswire data
was used for reeognition. The decoding lexicon consisted of 92,000 of the most frequent words in
our Arabic text corpus. The out of voeabulary (OOV) rate of the test sct measured against the
92K lexieon is 7.5%. The forward pass is a fast mateh beam search using the HMMs and an
approximate bi-gram language model. Thc output of the forward pass eonsists of the most likely
word-ends per frame. The backward pass operates on the set of ehoiees from the forward pass to
restrict the scarch space and an approximate trigram language modcl to produce an N-best list of
hypotheses. The N-best list is then re-ranked using a eombination of the aeoustie seores, and a
language model score. The weights for re-ranking were tuned on the development set.

A scparatc sct of 442 images rclcascd by LDC was split into two parts; one was used for
development and the other for testing. Table 5 shows the performanee on the test set with varying
amounts of training data for glyph modcling. Increasing the amount of glyph model training data
by a factor of 3 rcsulted in an 8.7% rclative drop in WER for authors who were never seen in
training. Note that the WER was mcasured by dctaching punctuations and sequeneces of digits
from othcr words to which they may be attached. Surprisingly, the WER on the images by authors
in training is much worsc than thosc by authors who are not in training. We believe that this is an
artifact of thc data and scribc selection of the test set under consideration. Experiments on a
different test set held out from the training data showed the performanec on seribes not scen in
training to be 31% relative worse than those who wcre representcd in training. Notc that
inercasing the amount of data improvcs performance on the pages written by authors who are not
scen in training. However, this is not the ease for authors represented well in training.

%WER
Number of Number of Authors in Authors not in
Training Images | Training Authors Training Training

848 10 S51.3 36.3
3371 20 41.1 Sil.il
5288 38 41.6 294
8253 58 43.8 28.6
9741 71 43.1 28.4

Table 8: OCR Performance with Glvnh models trained on different amonnts of trainine data
4.1.5  Improvements on Handwritten Corpus
In the following we summarize the improvements in HMM-bascd tcxt recognition on the
MADCAT data.
Unsupervised Adaptation [BBN]: Adaptation has becn widely used to combat the variability in
specch in automatic specch recognition and to adapt to fonts and degradations in text recognition

of maehine-printed doeuments. In handwritten text variability oceurs due to inter-seribe
differenees in writing style, font and slant.




We performed MLLR estimation to update the Gaussian means of the HMMs using the text
recognition output of cach page in the test sct. The updated models were then used to re-decode
the given page. Unsupervised adaptation gave a relative improvement of 4.5% as shown in Table

Improvements %WER
PACE Features (Baseline) 3557
+ Unsupervised Adaptation 34.1
+ Gradient & Concavity Features 31.3

Tahle 6: Summarv of handwritten text recoonition imnrovements on MANDCA Tdata.

Integration of Structural Features in HMM based Glyph Modeling [BBN, SUNY]: In this
phase, we explored two new structural features for text recognition — Directional Element
Features (DEF) and Gradient-Structurc-Concavity (GSC) features. The directional clement
features arc based on the idea of non-linear matching of the directions of the patterns, and are
variants of the gradient features. In the Arabie seript, many letters share common primary shapes
and differ only in the number and position of the dots and strokes. Structural features capture
intuitive aspeets of writing such as loops, branch-points, endpoints, and dots. One such family of
features 1s the GSC (Gradient, Structure and Concavity) features. GSC features are symbolie,
multi-resolution features that combine threc different attributes of the shape of a character — the
gradient representing the local orientation of strokes; structural features that extend the gradient
to longer distances and provide information about stroke trajectories; and eoneavity that eaptures
stroke relationships at long distances. While GSC features have successfully been used in
recognition of isolated digits and handwritten words in the past using segmentation-based
approaches, they have never been used in the HMM framework. In this section, we deseribe a
novel integration of these structural features in BBN’s HMM-based text reeognition framework.

For computing the GSC features, first a gradient map is constructed from the normalized image
by estimating gradient value and dircction at cach pixel. Next, Gradient features arc obtained by
counting the pixels which have almost the same gradient. The structure features enumerate
complex patterns of the contour. To compute the concavity features, pixels which lic in ecertain
speeial regions such as holes and strokes are detected. The image is then divided into bins and the
number of such pixels in cach bin is counted.

. g Frame :
Tightening Win‘ow - Adjusted
window w, / .framc

window w,

Axial

Figure 9. Illustration of frame tightening for feature computation.

In Phase 1 of the effort, we integrated GSC features into the HMM framcwork as follows. First,
we used a wider window than the PACE features for computing the GSC features. Since the
baseline of a word image may fluctuate within portions of the same word, we also algorithmically
tightened the upper and lower boundaries of the sliding window. This ensures that the features are
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normalized and also minimizes the variation of the feature space. Figurc 9 shows thematically the
tightening of the frame. Wc define the width of the frame (wy) as wewidth = weheight/12, where
weheight is the height of the word image. A tightened window wt is obtaincd by cxpanding wy to
both the left and right sides so that w,.width = Swewidth. The upper and lower boundarics of wy
arc redcfined by the bounding box of black pixels within w,. We thus obtain an adjusted window
w,. The rcgion within w, which is outside of w, does not have any black pixcls. The GSC features
are computed from the adjusted frame window w,. The tightcned window w, is divided cvenly
into 12 overlapping vertical bins, and 4 sets of GSC fcatures arc computed for each bin. A total of
48 ot cach of the GSC fcatures are computcd for each frame, and we usc an LDA to reducc the
dimension of the featurc vector to 15.

W tried different combinations of the PACE, DEF and individual GSC fcaturcs with and without
frame tightening. Frame tightening consistently showed improved performance. The DEFs
provided a 4% relative improvement in WER. The combination of Gradient and Concavity
features with the PACE features yielded the biggest gain — an 8% relative reduction in WER as
shown in Table 6.

Figure 10: Example of critical point and chain code features extracted by SUNY.

Chain-code and critical point Features [SUNY]: In addition to the integration of GSC featurcs
into the HMM framework performed by BBN, our team investigated other novel fcaturcs for
improving handwriting recognition. In particular, SUNY developed the eritieal point ehaincodc
featurcs. These features trace the “chaincode” of text and identify critical points such as sharp
turning points, end points, erossing points, and eonneetion points in the text. Critical points arc
ordered in the sequenee that they are encountered during the trace and serve as a eoded feature
veetor. Figurc 10 shows a samplc output from the feature extraction library for chaincodc and. In
the next phase, we plan to integrate these features in the HMM-based text rccognition systcm.

Slant Correction [BBN]: In order to normalize the hand-written documents by differcnt authors,
we pre-proeessed the images by automatically correeting the slant in each word image by
mecasuring the rclative pixel organization along the perimeter of connected components and then
used these statistics to reorganize each pixel position to reduce the overall slant in the image. The
slant-eorrected images used for text recognition did not result in any improvements.

Page-line Removal Experiments [BBN]: It was found that the performance of the text
rccognition system was considerably worse on pagcs with horizontal rulcs comparcd to pages
without such rules. We pre-processed the images to remove lines using threc line-removal
algorithms from: a) Polar Rain, b) SUNY, and ¢) BBN- Heuristie. The details of thc algorithms
are described in Section 2.1. The rcsults in Table 7 on the test sct pages containing ruled lincs
compare the three algorithms against a baseline without any line removal. The SUNY and BBN
algorithms rcsult in a small improvement in performance over the basclinc, with SUNY’s
technique giving a rclative improvement of 1.8%.
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Page-line Removal Algorithm | % WER
None 38.1
SUNY 37.4
BBN 37.9
Polar Rain 39.3

Table 7: Comparison of performance of different line removal algorithms on test set images with ruled lines.

In Figure 11, we show an instanee of line-removal performed by the three algorithms on a section
of an image. The SUNY algorithm suecessfully removes lines from the image, but doesn’t
perform noise-removal in addition to line-removal as done by the BBN and Polar Rain
algorithms. The BBN algorithm removes some character glyphs which are connected to the line
while performing line removal resulting in diseconneeted charaeter segments in the image. Since
the feature extraction algorithm does not rely on performing eonneeted component analysis, the
ercation of disconneeted eomponents does not significantly affeet system performanee. The Polar
Rain algorithm also removes some text pixels assoeiated with the charaeter while performing line
removal.
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Figure 11: Examples of line removal using the different algorithms.

Additionally, we also trained our HMM-based text recognition system with MRF ruled-line
removal and restoration algorithm applied to all images. Next, we decoded the test set with the
models trained using GC+PACE features. Using the MRF ruled-line removal resulted in a modest
improvement of 0.6% in the WER.

Improved Language Modeling [Columbia, BBN]: In this phase, we developed several different
n-gram language models, based on different Arabic word representations. Orthographically
defined representations ineluded the basie word forms, the word-parts (sequences of graphieally
connected sub-words), letters (graphemie stand-alone form), and letter shapes (i.e. glyph-like
representations that remember the eontextual allographie form of the letter). We also explored
versions of these models that remove all dots, sinee missing and misplaced dots are eommon
handwriting errors.  Morphologically defined representations included diacritized and
undiaeritized lexemes and basie POS tags. We also began exploring more eomplex Faetored
Language Models, which provide a means to combine several features into one model. The
models were trained using various volumes of data taken from the Arabiec Gigaword corpus. The
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lexemc and other morphological models rcquired the use of MADA to perform lemmatization as
an initial step before training the model. We integrated thc initial version of Columbia’s LM
rescoring module into BBN’s text recognition system and are presently optimizing it on the
MADCAT data.

4.2 Probabilistic Bipartite-Graph Matching [Argon]

Graph-based features: In this phase, we attempted to eapture the structural characteristics of
text by ecxtracting graph-analytic featurcs. The feature types considered were loops, dots,
cndpoints, eorners, 3-ways, 4-ways, and nodes of degree greater than four. Figure 12 shows
examplcs of some graph features in Arabic.
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Figure 12: Example of Graph features in Arabic

The generation of thesc graph featurcs consists of two main steps:

1. Graph Generation: First, we apply a thinning algorithm to rcduce text glyphs to 1-pixel
wide skelctons. Next, we convert the skeleton to a graph representation by identifying
interseetions, end-points, and loops.

2. Featurc Computation: We eompute discrete structural symbols such as ares, loops,
intersections, ete. or, extraet eontinuous attributcs of abovc symbols ineluding rclative
position, orientation, and angle betwecn edges.

Graph Matching: In the doeument understanding secedling cffort, we pecrformed bipartitc
matching against seleeted features to generate pairings betwcen features in the graph. In the first
phase of the MADCAT program, our foeus was to extend thc basie BGM approach to be machinc
trainable. Through the use of kernel methods and Relevance Veetor Machines (RVM), we
devcloped a mathematieally rigorous approach to probabilistic graph comparison. We have also
startcd implementing a hyperkcrnel optimization routine using Brent’s method in multiple
dimensions to allow automated ealeulation of hyperkernel parameters.

4.3 Stochastic Segment Models [BBN]

Stochastic scgment modcling involves a novel combination of HMMs and 2-D matching
approaches such as the bipartite graph matehing (BGM). It aims to improve the HMM-based
handwritten Arabic tcxt rceognition by integrating long-span segment lcvel information with the
shorter-span, frame-based information from the HMM. In our current approach, character HMMs
that use PACE features arc used to force-align training transeriptions to word or linc images to
automatically generate charactcr boundaries. Next, 2-D images (the stochastie segments) arc
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cxtracted for cach character using these approximate boundaries. Features computed on these 2-D
“whole charaeter” images are used to train “segment models”. In our eurrent approach, we use
support veetor machines (SVMs) trained with Gradient and Concavity (GC) features for modeling
of stochastic ¢haracter images.

Dev dataset HMM N-best
I Generation
Test dataset
N-best list
i g
HMM Rescoring segmentition SVM Rescoring
HMM Scores - Dev SVM Scores - Dev SVM Scores - Test
Yy v 3
ights . P
Score Weight e Score Integration fie ofered Niasl ey
Optimization I 4
HMM Scores - Test

Figure 13: N-best reseoring proeedure for using stochastic segment models.

During recognition, first the HMM character models are used to generate segment boundaries for
cach hypothesis in the n-best list. Each segment is evaluated against the segment models which
assigns a probabilistic score. The segment models in our initial implementation are support veetor
machines (SVMs) trained on stochastic segments in the training images. Finally, the n-best list is
rescored by eombining the segment model scores with the existing HMM scores, as well as
language model scores using weights that are optimized to minimize overall error rate on a
development set. Figure 13 is a schematic representation of our current stochastic segment
modeling approach. In Table 8, we report on improvements in WER for rescoring n-best lists on
the AMA test with the above approach. As shown, using the HMM and the SVM segment scores
result in a 2.3% absolute reduction in WER over using only the HMM for reseoring the n-best.

Rescoring Procedure %WER

HMM only 55.1
HMM + SVM 5018

Table 8: Stoehastie segment based rescoring on AMA test set.

5. Integration with GALE MT [BBN]

The ultimate goal of the MADCAT program is to produce accurate English transeriptions from
text in Arabic images. Therefore, we nced to integratc the document recognition and
understanding capabilities being developed under the MADCAT program with machine
translation (MT) and distillation technologies being advaneed under the DARPA GALE MT.
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In this phase we used BBN’s hierarchieal MT system (HierDee) being advaneed under GALE.
Sinee the MADCAT data eonsists of a eombination of Newswire and Web data, we ran
experiments with four different MT systems tuned on either Newswire or Web genre data with
and without diseriminatively determined eorpus weights. The system tuned to web genre with
corpus weights out-performed the other three systems on the eombined web and newswire test
set. We also performed system eombination with eonfusion networks similar to the GALE
system. The primary difference between system combination on MADCAT and GALE is that the
systems being combined in GALE program come from different sites on the BBN-led AGILE
team that use different translation methodologies, whereas for MADCAT system eombination,
we simply used four different eonfigurations of the BBN HierDee. The system weights were
tuned for TERBLEU on a combination of Newswire and Web genre documents from a held-out
GALE test set. As shown in Table 9, the combined system outperforms the single-best system
across both Newswire and Web genres.

System Mixed-Case TER
Newswire Web
Single Best System 50.1 56.5
Combined System 494 547

Table 9: Genre-wise comparison of single best system and eombined MT system on error-free text.

Presently, we perform machine translation (MT) on the single-best OCR output. Since the |-best
OCR output has a high error rate and a lattice or n-best is likely to eontain the correet answer, we
performed an experiment to establish the lower bound for TER by using the best/oraele answer in
the OCR n-best as the input to the MT system. As shown in Table 10, for the Devtest Partla
released by LDC, the improvement in translation error rate (TER) for using the oraele n-best
hypothesis is modest. Sinee the oracle hypothesis has a relatively high error rate, we will repeat
this experiment with a larger n-best list or a lattiee in the next phase.

System %WER | TER
Error-free text - 56.4
1-best OCR hypothesis 315 65.8
Oracle OCR hypothesis 23.3 63.7

Table 10: Impaet of using Oracle n-best hypotheses for translation.

6. Metadata Extraction — Logo Recognition [BAE]

Document logo recognition is a valuable eomponent of an overall document analysis activity.
Logo recognition can provide information about the document authors and subjeet, and can aet as
a quiek pre-sereening proeess for doeument review. Doeuments eontaining eertain logos-of-
interest can be flagged for review by human analysts. Automated logo recognition can be
diffieult for several reasons. A number of corrupting faetors ecan degrade logo image quality and
thus reduee performanee of logo recognition algorithms. Geometrie logo misalignments, such as
rigid body (translation, rotation, and seale offsets) or more general affine (including skew), can
result from improper doeument eopying, mis-calibrated eopy maechines, and inaeeurate logo
segmentation. The presenee of noise may be an additional problem. Documents that have been
duplicated many times, or have been duplicated by degraded copiers may experienee salt-and-
pepper noise, shading issues, and pixel drop-out. The presence of these contaminating effeets can
cause difficulties for algorithms based on various technologies. For example, approaches based
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on geometric features such as corners and shape-based fcatures may be reduced in the presence of
noise, which causes the gencration of false features. Spot noise, in which pixel blobs can block
out small regions of the image, can changc the gcomctric structure of the image thereby reducing
matching performance.

In this phase, wec performed logo recognition cxperiments to assess the feasibility of two gencral
approaches; spatial domain correlation approaches, and radon transform domain approaches. Our
initial cxperiments on thc UMD logo databasc and the tobacco logo databasc indicatc that phase
correlation-based approaches work bettcr than the radon transform.

We investigated use of thc Alpha-Rootcd Phasc Corrclation (ARPC) matching approach in the
Fourier log-polar domain. The motivation for this was to perform translation, scale, and rotation-
invariant logo recognition. We investigated tolerance of Fourier log-polar domain matching as a
function of logo rotation. It was determined that a combination of thc intcrplay between digital
sampling and rotation ecreated artifacts that degraded recognition performance. We also
dctermined that error in the cartesian to polar eoordinate conversion was a secondary error source
which degraded performance. We subsequently built in rotational toleranee by ineluding rotated
reference logos associated to cach rcference logo, and regencratcd verification performance
results. We also revisited application of the spatial domain ARPC approach to recognition over
thc UMD logo databasc. We found that the primary reason for degradation of the spatial domain
ARPC approach is the deterioration of the sclf match scorc in thc presencc of logo alignment
errors. The addition of thc rotational tolcrance improved the overall verification performance by
increasing self-match scores. We also investigated tolerance of thc spatial domain ARPC
approach to logo rotation. We defined rotational robustness metrics and determined valucs of the
alpha-rooting parameters that optimized the mctries.

With the reeeption of additional logo imagery, we revisited the radon transform domain ARPC
approach to logo recognition. We discovered that the artifacts due to logo imagc padding and the
rectangular shape of the image bounding box degraded recognition performance. Reeognition
performance was significantly dependent on the degree of artifacts present in the radon transform
domain. Wc devcloped an algorithm to estimatc appropriate cropping of the radon transform
image to reduce the presence of artifacts. We investigated the rotational toleranee of the cropped
radon transform and found that appropriate artifact reduction can produce reasonable rotation
tolcrance. We gencrated logo verification performance results over thc UMD logo databasc, in
the form of Reeciver Operating Characteristies (ROC) eurves.

Finally, wc dcvcloped reverse videoing of the pixel values for removing the artifacts caused by
Radon transform. In addition, we devcloped a translation normalization approach and a scale
estimation algorithm in the radon transform domain. Togcthcr with the rotational invariance of
the radon transform and the use of ARPC, we developed a recognition approach invariant to logo
translation, rotation, and scale.

7. Evaluation System and Accomplishment of Phase 1 Goals [BBN]

We participated in the MADCAT Phase | evaluation held in September 2008. The glyph model
used in the evaluation system was trained on a total of 8253 images from 58 different authors.
Position-dependent tied mixture (PDTM) HMM models were trained for a total of 176 unique
characters. A trigram language model trained on 90 million words of the GALE corpus in
eombination with a 92K dictionary was uscd for recognition. Recognition was performed using a
two-pass scarch strategy. The resulting n-best list was then re-ranked using a combination of the
acoustic seores, and a language modcl score which does not model the “whitc space” token. The
weights for re-ranking were tuned on the development sct. The top best hypothesis from the re-
ranked n-best list was uscd to adapt the means of the HMM model via MLLR cstimation. We
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PACE and gradient and coneavity (GC) features, referred to as the GCPACE system.
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Figurc 14: Plot of Accuracy versus Percentage of documents on Phase 1 Evaluation Set.

The MT system used for translation was the BBN’s hierarchical MT engines. The best translation
output on error-free text was obtained by eombining the MT deeoding results from four
differently tuned systems.

System combination works best when the systems being combined are sufficiently different.
Therefore in order to introduee as mueh variability in the systems being combined as possible, we
mix-and-mateh the two text reeognition systems and four MT systems in order to produee four
tinal system outputs for combination. The details are shown in Table 11. The ecombined system
out-performed the single best system giving a relative gain of 4.3% in mixed-case TER.

S‘y’gfm MT System e s Mo | METEOR
GCPACE Web, Corpus Weights On 31.5 65.6 18.4 45.5
PACE Web, Corpus Weights Off 344 67.0 17.7 44.0
PACE Newswire, Corpus Weights On 344 67.3 17.1 43.8
GCPACE | Newswire, Corpus Weights Off 31.5 66.5 17.5 45.2
System Combination 62.8 19.5 46.0

Table 11: Phase 1 evaluation system results on text rccognition output of test set.
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The program metric for MADCAT is human translation error ratc (HTER), which involves post-
cditing the system output by human annotators. The HTER measured on our MADCAT Phasc |
evaluation output is shown in Figure 14. As ecan be seen from the figure, our team successfully
accomplished the Phase | targets for MADCAT and we have a modest head-room towards the
Phase 2 targets.

8. Analysis and Future Work [BBN]

Periodic analyses of causes for errors are a part of our technical plan for MADCAT. In Phasc 1,
we developed a comprehensive error analysis methodology for understanding the causes of crrors
for text recognition. Our preliminary results indicate the following are the four main causcs of
errors:

1. Poor legibility: significant fraction of words on the page are difficult to read

2. Overlapping words/lines: page is too crowded resulting in words from adjacent lines are

touching cach other

3. Ruled page-lines: prescnee of ruled page-lines on the image

4. Skew: the baseline within the text line exhibits varying orientation
For Phasc 2 of the effort, we have ercated a technical plan to address the above causes of errors in

our MADCAT system. We also plan on performing a more dctailed analysis to refine the
technical plan for Phase 2.
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